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Abstract

This research investigated the questions, "Given an effect size (ES) from a counseling
outcome study, what is the probability that a client would have a negative response to the
treatment, and what is the probability that the client would receive a minimally acceptable
benefit?" Statistical models of 144 experimental situations were evaluated, and in 135 of
these, clients could have a unique, individual reaction to treatment. ES, sample size, the
variance of clients' treatment reactions and the distribution of these reactions were varied.°
ES was taken to be the fixed value ofa random variable, and given this value, the
likelihood of various values of the true, population.effect size were computed. For a given
experimental situation, a probability was computed by first determining the conditional
probability of a client reaction given a population effect size, and then, allowing the
population effect size to vary throughout its range, finding the weighted sum of the
conditional probabilities using the likelihoods of the population effect sizes as the
coefficients. Probabilities were computed using numerical integration routines provided
by Mathcad 4.0. The major findings were: 1) as the variability of client.responses to
treatment increases, so does the probability that a client will have a negative response to
treatment, and 2) sample size has little effect on the probability that a client will have a
negative response to treatment.
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Introduction

Counselors do research for a great variety of reasons. One goal is to better understand
people and their individual differences. In this vein, their work is sometimes hard to
distinguish from that of personality researchers and social psychologists. Another goal is
to evaluate programs to determine if their effectiveness warrants the resources committed
to them. For example, does a particular drug prevention program in a high school lower
the incidence of drug abuse? A third goal is to research a treatment or intervention
designed to help individual clients with some problem. It is this last type of research that
is the focus here. For brevity, it will be referred to as outcome research.

This symposium deals with the question, "Can counselors use outcome research to justify
the treatment of a particular client?" This question is different from the question, "Can
counselors use outcome research to justify the counseling of clients?" The latter suggests
an evaluation of the profession as a whole, or major segments of it, and is not of primary
concern here. The present focus is on the individual counseling relationship and how
useful counseling research is in helping a counselor decide whether a client will benefit
from a particular intervention. Specifically, given a particular treatment, what is the
probability that a client will benefit from counseling?

If the linear models taught to counselors in their statistics courses actually obtained,
justifying the treatment of individual clients would be straightforward. In the simple
model for a one-way design, Xij = p.+ cci + ski, it is assumed that all clients have exactly

the same response to the treatment. The effect size for the group is the effect size for
each client.

Based on an informal survey of counselor trainers and trainees, no one seems to believe
that all clients receive exactly the same benefit from a treatment. In fact, the consensus
seems to be that while some clients might thrive, others might actually get worse. This
means that the model Xij = p, +ctii + eii probably better represents counselors' beliefs, for

in this model each client can have his or her own unique treatment response. In a program
evaluation, one could consider the model X1 = + e'ii. Here one considers the
average treatment response and includes the individual's deviation from that average with
error, or elii = ay + cu. While this might satisfy a funding agency, it would be little

comfort to a client or counselor, for the client may be one of the unlucky ones who
deteriorates with such a treatment.

The counseling profession needs to investigate statistical models that can better help
counselors decide how to treat individual clients. What happens on the average in a group
is important, but it cannot take the place of an assessment of what happens, to individuals.
If a counselor knew that on the average clients improved with a given treatment, but also
knew that, say, 55% of clients actually got worse, would the counselor be justified in using
the treatment? This situation could arise if individual client treatment responses were
positively skewed. In this case, a counselor would probably not use the treatment, for it
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would be more likely than not that the client would deteriorate. However, the counselor's
decision would depend on a consideration of more than the effect size (ES) associated
with the treatment. The distribution of the "individual effect sizes" (IESs) of the clients
would need to be considered. Presently, the analysis of the typical outcome study and its
reporting does not consider the distribution of individual effect sizes.

Ultimately, the goal is to relate research findings more directly to the optimal treatment of
individual clients. One way to think about this problem is to conceptualize a counselor
who wishes to use the results from a treatment-control outcome study to determine the
course of treatment for a client. This counselor decides that the client may reasonably be
considered a member of the population studied and wants to use the obtained effect size
(ES) in determining how likely it is that the client will benefit. To determine benefit,
individual effect sizes (IESs) are considered, i.e., an IES represents each client's individual
response to the treatment. The counselor is interested in two probabilities: the probability
that a client would have a negative response to the treatment, Pr[IES < 0], and the
probability that the client's treatment response would exceed a "minimal acceptable benefit
(MAB)," or Pr[IES MAB]. The MAB is the smallest positive treatment outcome which
justifies the client's investment of time and money. There are, therefore, positive IESs less
than MAB which are too small to justify treatment.

It is these two probabilities, Pr[IES < 0] and Pr[IES MAB], that are the focus of this
paper. The next section presents the models used to evaluate these probabilities.

Related Literature

Other authors have described models that bear some similarity to the one considered here.
Two are discussed briefly. Wood and Games (1990) have written an expository paper on
a specific class of underspecified linear models. They consider, as one example,
"differential treatment effects across unmeasured subpopulations." Later in the present
paper, it will be seen that one of the models studied is related to this example of Wood and
Games's. Their approach, however, is to develop a model of unmeasured interactions with
the constraint that the correlations between unmeasured and measured independent
variables be positive. Further, they describe their model as appropriate for describing
differential rates of improvement, and do not include a situation where a client might
actually deteriorate as function of treatment. The approach taken here does not assume
the conditions that they do.

Hedges and Olkin's (1985) book on "Statistical Methods for Meta-Analysis" includes a
chapter on "Random Effects Models for Effect Sizes." These models are motivated by the
realization that large scale evaluation studies involving multiple sites may in effect be
assessing treatments that are unique to the site in certain respects. If one imagines a client
being an individual "site," then Hedges and Olkin's approach has some similarity to that
taken here. However, their assumption of within site consistency of treatment effect
allows them to avoid the confounding of experimental error and individual response to
treatment that is inherent in the present approach, i.e., there is no directly analogous way
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to compute an effect size for an individual client. Also, whether their focus is on the
across site average effect size or the variability of site effect sizes, their model does not
relate directly to the central concern here, namely, the probability of client success.

Probability Models

The general research situation modeled was that of a randomized, two-group experiment,
with a single treatment and a no-treatment control group. The linear model introduced
above to reflect individual treatment responses, = + + air is modified slightly to

reflect this experiment by changing the first subscript to "T" or "C." The treatment
group's model is XT3 = CCTi eTi, and for the no-treatment control group, the model is

Xci = p.+ ecj. Given these models, the population effect size is p.Es = -, and it is

estimated by ES =
Y a-r;

C . An individual effect size is defined as IES = (Note that
a

the usual side condition that the treatment effects sum to zero is not imposed.)

When a counselor reviews a research paper and notes the effect size, ES, it would be
appropriate to consider the probability that a client might deteriorate because of the
treatment, i.e., the probability that an IES is less than zero. To do this, the distributions of
ES and IESs must be considered. Further, two sources of variability, the standard

Dar
deviation of the IESs, DIES = , and of ES, DESES = , must also be considered. (See

a-

Note 1.)
In the analysis that follows, the outcome variable was assumed to have a standard
deviation of a. =1.00. The sample size for each group, treatment and control, was equal
to n and was alternatively set to n = 15, 35, and 90. The effect sizes investigated were set
at ES = 0.3, 0.5, and 0.8. An ES = 0.8 would lead to a statistically significant result (a =
.05) for all values of n studied. For ES = 0.5, significance would be achieved for n = 35
and 90, and (or ES = 0.3, only n = 90 would lead to significance. Therefore, six of the
nine combinations are statistically significant, and this seems reasonable because those
reading the research literature would tend to ignore nonsigificant results. On the other
hand, with the increased popularity of quantitative integrations of research, primarily meta
analyses, it seemed prudent to also include several combinations that, while not significant,
might play the role of rather weak treatments that are deemed to have an effect due to the
consistency with which the effect appears across studies.

In order to study the effect of the IESs, it was necessary to consider both the variability
and shape of the distribution of these quantities. Four levels of variability were
investigated, .IFS = 0.00, 1/3, 2/3, and 1.00. The first value is simply used to determine a
reference point, for the probabilities for 0.00 are those that would obtain if the usual
model were correct and every one had precisely the same response to the treatment. The
other values can be considered relative to the standard deviation of the criterion. The
largest value, 1.00, indicates that there is just as much variability in the individual
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responses to the treatment as there is individual variability on the variable itself. For
example, assuming normal distributions for the moment, if 68% of individuals lie between
40 and 60 on the MMPI-D Scale, then 68% of the clients' responses to treatment would
lie in the interval ES ± 10. An analogous interpretation holds for alES = 1/3 and 2/3.

While the normal distribution is a reasonable one to assume for the distribution of the
means, there is no reason to assume that IESs would be distributed in this manner. To
study the effect of the shape of the distribution of IESs, five distributions were used. All
of the following distributions were transformed to have a mean of ES and a standard
deviation of criEs. The distributions investigated were:

1. Normal Distribution

2. Uniform Distribution: The primary motivation for using this distribution was to
include a symmetric distribution with larger tail area probabilities than the normal
distribution. Considering distributions of IES where ES =11ES and a IES > 0, the
probability of a negative outcome is equal to the area below zero. For the nine
combinations of ES and aIES > 0 investigated, the transformed zero point varied
between the standard scores z = 2.4 and z = 0.3. For z = 2.4 the normal
distribution gives a greater area than the uniform. At z = 1.5, the areas are equal.
For the remaining seven conditions studied, the uniform distribution gives the greater
area. The area below z = 1.2 in the uniform distribution equals the maximum
obtainable for any symmetric, unimodal distribution (Glass and Hopkins, 1984, p. 64).

3. Chi-Square Distribution on 4 Degrees of Freedom (Chi2 +): This distribution was
included to investigate the effect of positive skewness (yi = 1.414). A positively
skewed distribution would result ifa relatively small number of clients had an
extremely positive response to the treatment.

4. Reflected Chi-Square Distribution on 4.Degrees of Freedom (Chi2 -): This
distribution was included to investigate the effect of negative skewness (yi = 1.414).
A negatively skewed distribution would result if a relatively small number of clients
had an extremely negative response to the treatment.

5. Mixture of Two Normal Distributions: The distributions studied were bimodal, the
kind that would result if there were distinct subpopulations within a population under
study. These distributions served as a "bad case," and they were specifically designed
to increase the probability of negative responses to the treatment. For Subpopulation
One, the mean and standard deviation were pl = 5a, and al = 0.01, respectively, and
its proportion in the mixture was 111. For Subpopulation Two, the corresponding

ES
parameters were 1.1, = II'

11
and a2 = 0.01, with II, = 1-112. The definition of

results in essentially all of Subpopulation One being below zero (negative IESs),
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while the definition of IA 2 guarantees that ES = +I-12p.2. The value of ni was

chosen to satisfy the equality:

IES = 111,[a; +(A, ES)1+1-12[a; ES)2]. Since the value of ams depends

on the distance between the subpopulations, as well as the variability within them,
setting cy, and a., to relatively small values allowed the subpopulations to be farther
apart. As a result of the preceding definitions, the relative sizes of the subpopulations
and the distance between them varied as a function of ES and ams. As an example,
when ES = 0.5 and (5,,s = 2/3, for Subpopulation One = 0.05, al = 0.01, and

= 0.595, while for Population Two, 1.1.2 = 1.308, a, = 0.01, and TI .= 0.405. These
subpopulations are depicted in the following graph:

20

10

0 0.5 1.5

The mixture based on these two subpopulations is positively skewed (y1 = 0.387), but
that would not always be the case. For values of ES and CY/Es studied, the skewness varies
from -2.156 to 2.507 and was never equal to zero. Given the constraint that virtually all

of Subpopulation One would be below zero, it follows that as
ES

increases, III must
(YIES

decrease. When f11 <0.5, the mixture is negatively skewed.

As mentioned previously in this section, all distributions were located at ES, the effect
size. ES is a random variable and it would be unlikely that the true value, IA Es , would
equal ES. To account for sampling variation, the likelihood of various values of ii.Es given
ES were computed. The normal density function was used as the likelihood function for
p. Es because it is easy to compute and would provide a close enough approximation to the
appropriate noncentral t-distribution for current purposes. (See Note 2.) The likelihood

for IA Es was defined, therefore, as 0.147, el ge(a)2. Giver! the above setup, the probability

that an IES would fall below zero was defined as:

Pr[IES <0].
(-

f u e-loge)2[
jr4,2n IL fiEsWEs)diEsicip.Es.
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The probability that IES would fall above the minimal acceptable benefit (MAB) was
defined as:

diEsid
u

Pr[IES MAB] = , e
crEs L [LAB fIES gES ) P.Es

In the preceding integrals, the density of the IESs, fms N.(uES ) was alternatively defined
according to the five distributions defined earlier in this section. The parameter, ar" ES
caused the distribution to be relocated as IA Es varied throughout its range in the outer
integral. The limits of integration for the outer integral were U = ES +5aEs and
L = ES 5aEs. The limits for the inner integral varied depending on the density function,
but it wa3 generally deemed adequate to consider the probability content in a region
10a,E, wide.

With respect to computing the probability of an IES being negative, the inner integral
computed the conditional probability ofan IES falling below zero, given that the
distribution was located at IlEs , while the outer integral obtained the weighted sum of
these conditional probabilities, the weight corresponding to the likelihood of each value of
IA Es given ES. Therefore, conditional probabilities for more likely values of p.E, were
given a larger weight in the overall probability. The integrals for MAB have a similar
interpretation.

All probabilities were obtained by numerical integration using Mathcad 4.0. The results
obtained are included in the Appendix.

Findings

The numerical results are presented in Table 1 and Table 2 in the Appendix. Together,
these tables contain 288 probabilities. The following description of the results includes
attention to specific probabilities that seemed of interest, the identification of trends, and
statistical analyses of the probabilities themselves. While an attempt has been made to
report the salient features, readers are encouraged to study the tables to find relationships
and points of interest that have not been included by the author.

The probability of a negative outcome

The first three columns of Table 1 give the values of n, ES, and a /Es investigated. The
next five columns give the probabilities obtained for the five distributions studied, Normal,
Uniform, and so on. (The term "a/Es > 0 columns" will be used to refer to this set of five
columns.) The last column, Reference, gives the probability of l.tEs being less than zero
when a/Es = 0, i.e., when the treatment has precisely the same effect on all clients.

6 9
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When sums = 0,across the conditions studied, the Reference probabilities vary from 0.00 to
0.21. These are the probabilities that the treatment has a negative effect even though the
observed effect size (ES) was positive. However, when alEs is allowed to assume the
values a /Es =0.33, 0.67 and 1.00, the probability of a negative response to treatment
ranges from 0.00 to 0.56. The highest probability in the Reference column and the highest
values in the DIES > 0 columns do not occur under the same conditions. For example,
0.56 is found in the ivlixture column when n = 90, ES = 0.30 and DIES = 1.00, while the
highest value under Reference occurs when n = 15 and ES = 0.30. The conditions under
which 0.56 occurs in the Mixture column result in a corresponding Reference value of
only 0.02. This Mixture probability is over 27 times higher than the corresponding
Reference probability. This discrepancy is due to the fact that sample size, n, has a
relatively large effect on the Reference probabilities, but a much smaller effect on the
DIES > 0 column probabilities. The correlation between the sample sizes and the
Reference probabilities is -0.54, while the correlations between sample size and the
probabilities in the DIES > 0 columns vary from only -0.13 to 0.11.

The Reference probabilities and DIES > 0 column probabilities are affected similarly by
effect size (ES). The correlation between ES and the Reference probabilities is -0.63,
while the corresponding probabilities for the DIES > 0 columns range from -0.74 to -0.61.

For the Reference probabilities, as sample size and effect size increase, the probability of a
negative effect decreases. This, of course, is precisely what would be expected from
theory. For the DIES > 0 columns, effect size has an important effect, but not sample size.
The DIES > 0 columns, however, have an additional source of influence, the variability of
the individual effect sizes (IESs). It is this source of variability that causes the DIES > 0
columns to have substantially different probabilities than those in the Reference column.

The DIES > 0 columns are highly related to one another. The correlations among these
columns vary from 0.946 to 0.997. The first four columns, Normal through Chi2 -, have
correlations from 0.980 to 0.997. The relationship of the Mixture column is only slightly
less related to the other four, 0.946 to 0.977. This drop in correlation is likely due to the
fact, as pointed out above, that the definition of the Mixture distribution varies as
conditions change. Still, all the DIES > 0 columns are related highly enough to combine
them while considering the influence of effect size (ES) and the variability of the individual
effect sizes (IESs), as indexed by their standard deviation, cy,.

The multiple correlation between the row means of the DIES > 0 columns (i.e., the average
obtained by summing across the columns in each row of Table 1 and dividing by five) and
ES and DIES is 0.983. Since the conditions studied are uncorrelated, the individual
contribution of ES and a Es equals the square of their correlations. For ES, it is
(-0.689)2 = 0.475, and for cries it is (0.702)2 = 0.493. (The multiple correlation is

therefore V0.475 + 0.493 = 0.983). Both ES and DIES have a strong influence on the row
means. They each account for almost half the variance in this average, and indicate that

10
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the probability of a negative reaction to treatment increases as ES decreases and a/Es
increases. While the direction of these relationships are what would be expected from a
theoretical analysis of the model investigated, the extent to which a linear function of ES
and a /Es predicts the average probability was not anticipated.

To say that the a 1Es > 0 columns' probabilities are similarly influenced by the conditions
studied is not to say that there are no differences among the columns. The column means
for Normal through Mixture are 0.224, 0.251, 0.236, 0.193, and 0.321, respectively. The
last two, Chi2 - and Mixture, are the more divergent, with Mixture's 0.321 being the most
different. The manner in which the IESs are distributed does affect the probability of a
negative response to treatment. As a point of comparison for these column means, the
average of the Reference column is 0.050. The average of the column averages, i.e. the
grand mean, is 0.245, nearly five times the size of the average of Reference probabilities.

From another perspective, the correlation ratio (r12) for rows is 0.843, and for columns, it
is 0.110. This means that over 95% of the variance in Table 1 is accounted for by row and
column effects, leaving less than 5% due to the interaction between rows and columns.
This indicates that the rows and columns have an additive effect on the probability that a
client will have a negative response to treatment. This, along with the strong linear
relationship that ES and criEs have with the row means, lead to a straightforward
understanding of the influences on probabilities of a negative outcome.

Under certain conditions studied, substantial proportions of clients would be negatively
affected by a treatment, even though that treatment was of benefit on the average. The
probability of a negative outcome is an additive function of the conditions investigated,
with ES, csiss, and the distribution of individual effect sizes playing a major role. Sample
size had little influence on these probabilities. The smaller the ES, the greater the
likelihood that the IESs will be negative. As cyms becomes larger, the distributions of LES
spread out and more of their area falls below zero.

Sample size does affect the Reference probabilities, with the probabilities decreasing as n
increases. The distribution of the p. Es contracts, because it is less likely that the true value
varies greatly from the sampled value as n increases. Since the probabilities obtained
when Ems > 0 are not affected greatly by variations in sample size, the largest
discrepancies between the Reference probabilities and the others are found when both n
and ityffis are large.

With respect to the conditions that lead to substantial probabilities of a negative response,
one must ask, "How likely is it that they would be encountered in the real world?" This
question is dealt with in the discussion section.

The probability of an "acceptable" outcome

8
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While counselors should avoid hurting clients, they also need to strive to give clients some
benefit that is commensurate with the time and money invested in therapy. To
operationalize this goal, the term "minimal acceptable benefit (MAB)" is introduced. For
this investigation, MAB was set at 0.5, meaning that a client would need to improve by
one half standard deviation on the outcome measure in order to have received a minimal
acceptable benefit (MAB). This criterion is arbitrary, and its only justification at this point
is that it equals what is generally considered in the literature as a "moderate" effect size.

Table 2 presents the probabilities that an IES will exceed the MAB. These results contrast
with those given in the preceding section in two important ways. First, in Table 1, all
DIES > 0 columns' probabilities are higher than their Reference probability counterparts. In
Table 2, however, 46% of the a /Es > 0 columns' probabilities are less then their Reference
probability counterparts, 13% are the same, and 41% are greater. In 41% of the cases,
then, ams > 0 leads to a larger probability that the client's benefit will exceed the MAB.
When ES = MAB = 0.50, the symmetric distributions, the Normal and Uniform, have half
their area on either side of the MAB, which, of course, agrees perfectly with the Reference
probabilities. As for the other distributions, positive skewness is associated with
probabilities being less than the Reference probabilities, for all of the Chi2 + probabilities
are smaller, as are those for the instances where the Mixture is positively skewed. For
ES = 0.80, and, therefore, ES > MAB, all probabilities in the a iEs > 0 columns are less
than the Reference probabilities, meaning the client is less likely to obtain the MAB when
there are unique responses to treatment. When ES = 0.30, with three exceptions, the
probabilities in the DIES > 0 columns are larger than the Reference probabilities. The three

exceptions occur in the Mixture column where both sample size and ES
are smaller.

a IES

The mixture is positively skewed in these three cases.

In Table 2, with very few exceptions, positive skewness is associated with lower
probabilities than symmetry, while negative skewness is associated with higher
probabilities. This makes conceptual sense since positive skewness results in more
probability mass to the left of the mean and this tends to place more mass to the left of
MAB. The opposite is true for negative skewness.

With some values in the CT 'Es > 0 columns higher than the Reference probabilities and
others lower, it is not surprising to find similar means for these sets of probabilities. The
average Reference probability is 0.53, which is close to the average in the remainder of the
table, 0.50. While the means are much more similar than in Table 1 (where the
corresponding values were 0.05 and 0.25), the variance of the DIES > 0 columns'
probabilities in Table 2 is 50% greater than in Table 1, and there are some marked
discrepancies between the Reference probabilities and those in the DIES > 0 columns. For
example, when n = 90, ES = .30, and DIES = 1.00, the Chi2 - probability of exceeding
MAB is 0.51, while the corresponding Reference probability is 0.09. In this case, the
individual treatment responses lead to five times as many clients reaching the minimal
benefit as would be the case if the treatment response was the same for everyone. In the

9 12



Probabilities of success

other direction, when n = 90, ES = .80, and o.,Es = 1.00, the Mixture probability is 0.42
while the Reference probability is 0.98. The Reference probability would lead one to
believe that only 2% of the time would ES fail to exceed the minimal benefit, but in
actuality, 58%, the majority clients, would have an IES less than the MAB.

On a more global level, as in Table 1, sample size has very little influence on the a /Es > 0
columns' probabilities, with correlations between sample size and these probabilities
ranging from -0.04 to 0.06. With exception of the Mixture column, the probabilities in the
a IES > 0 columns have a stronger linear relationship with ES than a IES (correlations from
0.91 to 0.94 for ES as opposed to correlations from -0.18 to 0.11 for a/Es). It is clear in
the first four columns of Table 2 that cytEs has an effect. When ES = .30, increasing values
of 6/Es are associated with increasing probabilities, but when ES = .80, increasing values
of alEs are associated with decreasing probabilities. In the fifth column, Mixture,
increasing values of ams are associated with decreasing probabilities, regardless of the
value of ES. This is in contrast with. Table 1, where there is a similar linear influence for
ES and alEs. The correlations with the Mixture column (0.74 and -0.64 for ES and am,
respectively) are more in line with those for Table 1.

The first four a ms > 0 columns are highly related, with correlations ranging from 0.941 to
0.997. The correlations between Mixture and the other four distributions range from 0.66
to 0.83. These lower correlations are probably due to the fact that as the skewness of the
Mixture varies from negative to positive values, the probabilities tend to decrease, thereby
changing the ordinal position of these probabilities with respect to the other columns.

The means of the aLES > 0 columns vary from lows of 0.43 for Mixture and 0.46 for
Chi2 + to 0.58 for Chi2 -. In terms of proportion of variance accounted for, "columns"
accounts for 10% of the variance (if = 0.10), which is much smaller than that accounted
by the "rows" (if = 0.77). In contrast to Table 1, interactionbetween rows and.columns
accounts for 13% of the variance in Table 2, which makes this source of variance larger
than that for columns.

Discussion

This project was designed to give counselors some idea of the probability that a client
would have a negative response to a treatment and, also, the probability of a client
improving at least one half standard deviation on the treatment's outcome measure. It is
assumed the counselor would have an effect size from a research paper and know the size
of the samples studied. Taking this information from the research report and combining it
with the counselor's speculations about the variance of individual treatment responses and
their distribution, the counselor can use the findings of the present study to better
understand the probabilities of various treatment outcomes.

With respect to the probabilities of a negative response to treatment, if the counselor is
willing to assume that all clients have the exact same response to a treatment, then he or

10
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she only need attend to the sample sizes and effect size. Generally speaking, if the effect
size is at least 0.50 or the sample size is at least 15 in each group, the probability is less
than 0.10 that the true effect size is negative. If clients do not have a uniform response to
treatment, then when the effect size is less than the standard deviation of the individual
responses to treatment, roughly 20% or more of the clients will have a negative response
to treatment. This percentage will increase as the effect size decreases and the standard
deviation of the individual responses to treatment increases, regardless of the sample size.
All other things being equal, one can expect higher probabilities of a negative response if
the distribution of individual responses is a mixture of extremely different subpopulations.
In this latter instance, the results can be very different than what would be expected if
there were a uniform response to treatment. In the worst case investigated, given only the
sample size and effect size, one would conclude that the chances of the true effect size
being negative was only 1 in 50, but if the standard deviation of individual responses and
the shape of the distribution were taken into account, 56% of clients would be expected to
have a negative response.

If a counselor is willing to assume that all clients have the exact same response to a
treatment, then he or she only need attend to the sample sizes and effect size when
determining the probability that the true effect size exceeds the minimal acceptable benefit
of one half standard deviation increase on the outcome measure. Whenever the effect size
exceeds 0.50, the probability that the true value exceeds 0.50 will be greater than 0.50.
This probability increases as the sample size or the effect size increase. If clients vary in
their response to treatment, this variability and the distribution of the individual treatment
responses will combine, and depending on the specific conditions, may result in
probabilities higher or lower than what would be expected if the clients responded
uniformly. For symmetric distributions of individual responses to treatment, if the effect
size equals 0.50, then the variability of individual responses has no effect, and the results
are the same as if clients had a uniform response. Positively skewed distributions give
lower probabilities, while negatively skewed distributions result in higher ones. If the
effect size is 0.80, then all levels of variability and'all distributions lead to probabilities that
are less than would be expected if the clients all responded in the same manner. When the
effect size is 0.30, with only three exceptions out of 45 sets of conditions, the
probabilities are higher than would be expected if the clients all had the same response to
treatment.

The utility of the results presented here depends on the realism of the models investigated.
It is an open question as to how often one might encounter the variances and distributions
studied. Perhaps the most that can be expected is that these results will serve to sketch
the boundaries of an area with which counselors should be concerned. Until counselors
can adequately estimate or control treatment reaction variability, much of the counseling
outcome research reported will provide little justification for their interventions with
clients.
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Notes

Note 1-

The exact variance of ES, 6Es, is given by Hedges and Olkin, 1985, p. 104 and differs

from the definition used here, namel 2
y, . For the values of p. Es and n used here, the exact

variance differs by no more than several hundredths, and this was considered
inconsequential for present purposes. The definition of the variance used here assumes
that the treatment and control populations have the same variance and that the "pooled"
estimate of the variance is used to obtain the standard deviation in the denominator of ES.
For the model defined above, whether or not the treatment and control populations have
the same variance depends on the size of bar and the covariance of ctij and eTi
Negative values of the covariance can lead to the treatment population having a smaller
variance than that of the control. Increasing the variance has the same effect as decreasing
the sample size. Therefore, some insight into the effect ofa larger treatment variance can
be gained from looking at results for smaller sample sizes. However; as the results
demonstrate, sample size has little effect on the probabilities reported, and therefore
unequal variances would not be expected to affect the results either.

Note 2:
Specifying a likelihood function for µES amounts to treating a parameter as a random
variable. While there are different justifications for this, the one that seems most
appropriate for present purposes was given by Fisher(1935) in an exposition of fiducial
probability. Using the normal distribution to define the likelihood function for P.Es finds
some support in Hedges and Olkin's(1985) work where they construct co: fidence intervals
for ES based on the normal distribution when sample sizes are of the size studied here.
They actually used an unbiased estimator defined differently than that used here, but for
the degrees of freedom studied here, the amount of bias is small. To the extent that the
normal distribution suffers as an approximation due to its having a different variance than
the exact distribution, this should not be of concern, for the results show that varying n,
and, consequently, variance, has very little affect on the results when am, is in the range
investigated here.
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Table 1
Probabilities of a Negative Response

n ES a [ES Normal Uniform Chi2 + Chi2 - Mixture Reference
15
15
15

15
15
15

15
15
15

.30

.30

.30

.50

.50

.50
.80
.80
.80

90
90
90
90
90
90
90
90
90

30
.30
.30
.50
.50
.50
.80
.80
.80

.33

.67
1.00

.33

.67
1.00
.33
.67

1.00

.33

.57
1.00

.33

.67
1.00

.33

.67
1.00

33
.67

1.00
.33
.67

1.00

.33

.67
1.00

.27

.35

.39

.16

.26
.32

.05

.15

.23

.23

.34

.39

.11

.24

.31

.03

.13

.22

.21

.33

.38

.09

.23

.31

.01

.12

.21

.28

.37

.41

.16
.29
.36
.05
.17
.27

.25

.37

.41

.12

.28

.36

.02

.16

.27

.24

.37

.41

.09

.28

.36

.00

.15
.27

.28

.39

.45

.15

.27

.36

.04
.12
.23

.23

.39

.46

.09

.25

.37

.01

.08
.22

.20

.39

.46

.04

.24

.37

.00

.06

.29

.32

.15

.22

.26

29
.43
.49

.21

.17

.33
.43

.09

.06 .08

.14 .21 .01

.19 .32

.21 .28

.28 .46 .10

.31 .52

.11 .16

.20 .35 .02

.25 .45

.04 .08

.13 .22 .00

.19 .34

.18 .30

.27 .49 .02

.31 .56

.09 .17

.20 .38 .00

.25 .48

.03 .08

.12 .24 .00
.22 .18 .37
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Table 2
Probabilities of an Acceptable Benefit

n ES a Normal Uniform Chit + Ch12 - Mixture Reference

35
35
35
35
35
35
35
35
90
90
90

.30

.30
30

.50

.50

.50

.80

.80

.80

.30

.30

.30

.33 .34 .35 .32 .36 .36

.67 .40 .41 .34 .45 .27 .29
1.00 .43 .44 .35 .50 .17

.50 .50 .47 .53 .54

.50 .50 .44 .56 .44 .50

.50 .50 .42 .58 .28

.33

.67
1.00
.33
.67

1.00

.33

.67
1.00

.50 .33

.50 .67

.50 1.00

.80

.80

.80

.30

.30

.30

.50

.50

.50

.80

.80

.80

.33

.67
1.00

.33 .29 .33 .24 .32 .41

.67 .38 .41 .31 .46 .22 .09
1.00 .42 .44 .34 .51 .11
.33 .50 .50 .43 .57 .67
.67 .50 .50 .41 .59 .41 .50

1.00 .50 .50 .41 .59 .23
.33
.67

1.00

.79 .76 .80 .82 .87

.67 .63 .61 .73 .62 .98

.62 .59 .54 .69 .42

19


